Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
Search all posts for:   

 

View all (68) posts »
 

First Graphene and Swinburne University Developing New battery Technology Using Graphene

Posted By Terrance Barkan, Wednesday, February 21, 2018

Advanced materials company, First Graphene Limited (“FGR” ) has announced an update on its work with the Swinburne University of Technology (SUT) on the development of a new energy storage technology using graphene, referring to their new product as the "BEST™ Battery".

 

While it is generally accepted that lithium-ion batteries are the state-of-the-art energy storage device available for consumer products today, they are not without their issues. In particular, there are examples where they have been the cause of fires in some instances. There is a vast number of companies and research institutions working to provide safer, more reliable and longer life batteries which utilise materials other than lithium-ion. Some of these involve the use of graphene. 

 

First Graphene, through its research and licencing agreements with Swinburne University of Technology, is pursuing a significantly different path to the development of the next generation of energy storage devices. Rather than trying to improve existing chemical battery technology, it is pioneering the field of advanced supercapacitors which have the potential to change the future for energy storage forever, particularly in handheld and consumer products.

 

Using the advanced qualities of graphene, First Graphene is developing the BEST™ Battery. This energy storage device promises to be chargeable in a fraction of the time and it will be fit for purpose for at least 10 times the life of existing batteries. It will be significantly safer and more environmentally friendly. All these improvements are made possible because the science relies on physics rather than chemical reactions, and on the remarkable properties of graphene materials. 

 

The table below provides an interesting comparison of key operating parameters of the BEST™ Battery alongside existing lithium-ion batteries and existing supercapacitors available in the market. What is particularly noteworthy is the 10x increase in the energy density expected for the BEST™ Battery, when compared with supercapacitors currently on sale in the market place, and the much lower cost per Wh. These features will provide great commercial advantages.

 

Table 1: Comparison between BEST™ Target development and existing Li Ion AA Batteries and an existing commercial Supercapacitor.

 

While the exact details of the design and construction of the BEST™ Battery must remain confidential for reasons of commercial security, First Graphene have disclosed the process of manufacturing the battery involves the use of lasers to create nanopores in graphene-based materials which achieve energy densities more than 10x as great as the pre-existing technology. Practical matters being addressed include the scaling up to the size of the battery from simple laboratory demonstrations of the effectiveness of the science, to devices which will be effective substitutes for batteries used in a wide range of hand held consumer products.

 

Recent Progress 

 

The first few months of the BEST™ Battery development project entailed the recruitment of additional, highly qualified research scientists and the acquisition of specialised equipment needed to prepare and manufacture the components of the BEST™ Battery.

 

Work has commenced on the improvement of many design aspects in order to optimise the configuration of the battery, with the ultimate objective being to develop a product suitable for mass scale production. At the same time, the methodology of making the battery is being subjected to continuous experimentation to improve the effectiveness and efficiency of the materials and processes used in the device. In addition, the pilot production line for building the BEST™ Battery prototype has been set up, which enables the manufacturing of the BEST™ Battery to meet industrial standards. 

 

Swinburne recently reported that a single layer of the BEST™ Battery prototype that made by the pilot production line was able to sustain an LED globe for a period of 15-20 minutes with only a few seconds of initial charge. This is a very significant outcome, auguring well for the ultimate product which is intended to comprise much more than 100 stacked layers of graphene sheets. 

 

The Ragone plot below tracks the continuing improvements in the performance of the BEST™ Battery.

 


 

Figure 1: Ragone Plot demonstrating the progress of the BEST™ Battery development toward its goal

 

Graphene-Based Flexible Smart Watch 

 

The research being undertaken also involves the development of flexible batteries for smart watches which can be incorporated into the watchband itself. These will be light-weight and flexible, they will be able to be recharged in 1-2 minutes, and they will be fit for purpose for many tens of thousands of cycles. Information will be displayed not only on the watch face, but also on the band itself.

Figure 2: Graphene Watch – Flexible Smart Watch concept

 

Target Markets 

 

While it is intended that the BEST™ Battery development program will eventually provide suitable substitutes for many devices which currently used flat pack and cylindrical batteries, it will also provide batteries for new, innovative purposes. The thin profile of the Battery, and its flexibility, will make it suitable for use in clothing. It could also be integrated into smart watch bands, as an example, rather than having a solid block configuration. It is already showing excellent ability to convert kinetic energy into stored energy due to the speed at which it can charge i.e. simple movement of shaking can recharge the Battery. 

 

Commenting on these progress, FGR’s Managing Director Craig McGuckin said:

 

“The demonstration of full scale commerciality of the BEST™ Battery will take time, but so far the results have been very encouraging. The science has been proved at laboratory scale and now we are advancing many aspects of materials used and design processes leading to the development and optimisation of production methodology. We are very pleased that Swinburne University of Technology has advised us that the pilot production line is a world first. We are confident that the advantages offered by our technology will bring revolutionary changes to how we use batteries in the future, with added safety, efficiencies and flexibilities. The BEST™ Battery will be a serious game changer”.

 

 

Tags:  Battery  First Graphene  Li-ion  Supercapacitor  Swinburne University 

Share |
Permalink | Comments (0)