Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

GrollTex Tackles Sensor Markets With High Quality Graphene

Posted By Dexter Johnson, IEEE Spectrum, Thursday, March 1, 2018

  Jeffrey Draa, CEO, GROLLTEX

 

Last month, The Graphene Council's Executive Director, Terrance Barkan, and its Editor-in-Chief, Dexter Johnson, had the opportunity to have a talk with the CEO of California-based Grolltex Inc., Jeffrey Draa, about the company's business strategies in bringing graphene products to market and his views on graphene's future. Here is that conversation.

Could you tell us a little bit about the background of GrollTex. How did the company get started and how did you get involved with graphene? In particular, could you provide the history of Grolltex as a company?

Sure, so the name Grolltex is short for graphene rolling technologies and the brief history of the company is that my partner and co-founder and really the inventor, Dr. Alexander Zaretski, was a researcher at University of California San Diego.

He was involved with graphene growth and really got deep into graphene manufacturing techniques while he was at the University of California San Diego. One of the issues with this specific kind of graphene, as generated by chemical vapor deposition (CVD), of course, is the ‘transfer’ issue: How does one get single-layer graphene synthesized from copper off of the copper growth substrate and onto a substrate of interest without destroying the copper growth substrate? Of course, the current state-of-the art is to either acid etch the copper off of CVD graphene, or to use an electrolytic solution to sort of bubble the graphene off of the copper and have it rise to the top after a long period of time.

So both of these two processes, which had been state-of-the art, impact the copper in a very negative way so it's very expensive and not manufacturable. And my partner, Alexander, decided if graphene is going to go forward, there has to be a way to manufacture graphene and not destroy or impact that copper.  So he came up with a process to do that, a process that has a rolling schema where we reuse that growth copper over and over again. So that's kind of the background of the company. Alex had decided that he wanted, and felt so passionately about, this transfer technology and bringing it to graphene manufacturing that after completing his work as a researcher at UCSD, he broke out on his own and he asked me if I would be the business side of the company and he had the technical side. So that's kind of a brief background of Grolltex and how we came to be.

I understand you’re privately held company, correct?

We are, yes. We were funded roughly a year and a half ago with our seed funding and we've since about six months ago taken another round.

In terms of your graphene manufacturing that you just laid out, as you said you focused on producing single-layer graphene of the highest quality, so what are the markets that this product offering opens up to you? And what do you see as your strongest market now and do you see that market changing five years from now?

Well, as anybody that has knowledge of the graphene markets knows, single-layer high purity graphene like that synthesized via CVD has many theoretical use cases. We see on the short-term horizon three particular applications that are really kind of starting to command our attention. Those three are number one: sensing. So graphene given its electrical and mass properties makes an excellent sensor at a very, very small level. So sensing is number one.

We also are doing some work in the advanced solar cell arena and we have a grant from the California Energy Commission where we're working on a two-sided solar cell where graphene not only plays the part of barrier material but it's also the electrode material. So that's really exciting.

And for number three we’re also starting to get some inquiries for an application that actually Dr. Andre Geim at the University of Manchester, who, of course, was the discoverer of graphene was very passionate about. This is one of the very first applications that he thought futuristically would really make the world a better place, and that third application that we're starting to see on the horizon is graphene as a proton exchange membrane in a hydrogen fuel cell.

So those are kind of the three leading candidates we see right now. We’re judging that by some initial business that we’re getting in those areas.

You were discussing a number of applications you are pursing, including sensors. On your website you talk about enabling sensors that could be used for the Internet of Things. Can you explain why you see graphene playing such an important role in the development Internet of Things?

I’ll speak a little about graphene as a sensor material. When you combine the electrical conductivity properties along with the fact that graphene is one atom thick, you've got the potential for a sensor that could take us into the future for the next hundred years. We have patents around some designs of graphene-based sensing materials that are so sensitive that, for example, in the biotech world we had some bioengineering folks at Stanford use our sensor to sense the ability of individual heart cells to contract. Currently there only exists a different kind of test that can only count the number of contractions, but our sensor is so sensitive that it picks up the strength of contraction of the individual heart cell when it beats and it's a very robust signal; there's no mistaking it. So that's just one example of the potential of graphene as a sensor and we're seeing good activity there.

What is consistently your biggest challenge when you're talking to potential customers and convincing them how to use your product? Are they worried about pricing of graphene, the quality of product, a consistent supply chain? What stands out as one of the key issues that keeps coming up when you're speaking to these people?

So, I think the first consistent theme would surprise no one, and it's price. Almost any inquiry goes down along the lines of price, especially for a field like solar. If solar is implemented it’s going to need miles and miles of cheap graphene. Now the case of a sensor is not quite as price sensitive, but with regards to the big kind of large applications people think about like flexible displays and some of the other big idea changes for graphene those are really price sensitive. So price is the first one.

We don't get too many concerns with regards to the supply chain. Quality of product is sometimes discussed and that's partly because graphene is such a new field. But a lot of folks have what they are calling graphene and maybe debatably it is not. We don't necessarily have that problem because no one argues that single-layer graphene made by CVD is not graphene, so we don't have any discussion of the quality, but that sometimes can be an issue. So to kind of summarize, and get back to your main question, really price is the first thing that people want and that's the first hurdle you have to get over with almost everyone.

In addition to your graphene product, you're also producing hexagonal boron nitride (sometimes called white graphene). How do you see this material filling out your portfolio and what are the applications for this material that you're currently targeting and do you expect to develop other two-dimensional materials?

Hexagonal boron nitride is something we’re very excited about for several reasons. For the folks that aren't familiar with hexagonal boron nitride, you need to understand how it works with graphene. Graphene is, of course, the most conductive substance known at room temperature; it's on the order of seven times more conductive than copper depending on who you talk to. So as a conductor, graphene is really unparalleled. Now if you're going to design an electronic device of any type, of course, you worry about a conducting material because you can make the wire, the battery, and the switch with the conductive material. But the other thing you have to worry about is the insulating material. What are you going to use for the insulation for graphene? You have to separate the layers of the devices and hexagonal boron nitride is as good an electrical insulator as graphene is a conductor. And hexagonal boron nitride has a hexagonal pattern when it is synthesized in the proper way and that pattern lines up perfectly with the hexagonal lattice pattern of graphene so it also provides the strength benefit too. So it is really the ideal cousin of graphene. If you're an electronic designer, you're going to want both a conductor and an insulator and now we're going to be delivering both.

So that answers your first question and your second question, which was “are we going to develop other two dimensional materials?” As far as basic building blocks, we are going to rest on graphene and hexagonal boron nitride for a time because again those are your two basic building blocks: you need the insulation and the conducting but we also are developing other materials that go into specific devices. So, an example of this is the sensors I talked about that require some precious metal in small quantity—atomic quantity.  There are other materials involved when you go to make a specific device, but as far as the basic building blocks we're going to stand pat on graphene and hBN probably for a while.

What is your perspective on hybrid graphene materials? I am referring to this combination of a conductor and an insulator, or even a conductor with a semiconductor, and based on that will you look to develop those hybrids yourself or have your client make the next step in the value chain?

At the moment our clients are doing that work. Now I'm not going to say that we won't get into it, but we're going to be opportunistic with regard to that. With regard to opportunistic roads that we can go down today, our plate is pretty full, but there are several routes we can take. We are seeing folks in the semiconductor world, which is my background, starting to use other materials and creating devices out of some of those second and third level hybrids as you described and that's really exciting work. So we may get into some of that, but again we have a lot on our plate right now just based on what I described already.

I’d like to get your view of the overall industry over the short, middle and long term—five, ten, fifteen years expectations of graphene and the industry. And what is your strategy for best placing your company in the environment that you see developing?

With regard to our company, just saying the word “graphene” to a lot of people opens up so many thought patterns, channels and ideas that one of the things that's going to have to happen is the standards are going to need to be put in place fairly soon so that people can know what they're saying when they say “graphene”.

There's a lot of graphitic solutions out there and hybrids and powders and all kinds of things that debatably aren't graphene (of course, I would say that because of my company is involved in the area that there is no argument that it is pure graphene). But the point of that is we will need some standards and some nomenclature put in place to help take this whole field to the next level.

There's all kinds of great use cases for graphitic solutions that aren't graphene—great use cases, don't get me wrong—but let's make sure that we can assign proper nomenclature so people know what they are talking about and looking at. With regard to my company specifically, one of our challenges is picking our targets because again there are so many kinds of different opportunities. And when we first started out we decided we were going to have a two-phased approach to our business and we're doing the phase one part of that now.

Phase one for us is to make and sell graphene material as research material. So our core customer for our phase one is the university lab and commercial lab. So we sell graphene on copper substrates, on wafers, we sell graphene on customer specific substrates. You send us your substrate of interest and we’ll put our graphene on it and send it back to you. That phase one of our business that I just described to you is allowing us to pursue all kinds of exciting applications and some of them are helping us go in new directions. So, our challenge in the first five years I think is; number one stay on that phase-one path, get to profitability just as a business and number two really pick our paths carefully with regard to what are going to be the first real big market businesses out there in graphene—the ones that have paying customers.

So from a commercialization perspective, I think what you mention is that the majority, or is it basically all, of your customers are they in the testing or R&D category right now?

Yes, that’s fair to say. There's a population of big players in the industry that have their own graphene “skunkworks” that they're just not talking about. For example, I'm just going to throw some names around freely about big companies that we happen to know that do have graphene labs internally that it's just really very hush-hush. The reason we know this is because we know some of the people that have been hired out of other graphene places into these big companies. For example, Apple is one of them. They don't talk about it but they have a big graphene effort. Hewlett Packard is of one of those. Samsung is not bashful about their graphene efforts. So there are a lot of big companies where there is a lot of activity going on but nobody is talking about it so I think there's a lot more happening in graphene than people are even aware of because it’s not being leaked.

One of the things we’re very interested in doing as the Graphene Council is helping to act as a catalyst and accelerate commercialization.

One of the biggest obstacles to commercialization we’ve seen is simply the education of potential end users and consumers.  Can you talk a little bit about that? I mean as a company trying to educate potential clients one by one is a time consuming and expensive proposition.

What are the some of the other vertical markets or specific application areas—you mentioned sensors, of course? Are there some other specific areas where you think there's good commercial opportunity where we can help educate those populations?

The first one that comes to mind is the display market. So the display folks, of course, have been using indium tin oxide (ITO) as their core material for decades. ITO is really not a great material for them; it's expensive, it involves dirty mining and it is very prone to pollution when getting it out of the earth. It's also brittle which is why everyone’s display on their phone, their laptop, their television, all displays are brittle; they're like glass.

Graphene is actually a plug and play replacement for ITO and graphene enables flexible displays. So, the first big use case I can think of and that would be the most exciting and the most impactful for the most people is ITO replacement for making flexible displays.

But also I think it’s a use case that's pretty far down the road. It’s very price sensitive for one reason and number two there is a huge infrastructure with multiple large multinational corporations already in place and has been in place for decades with a big manufacturing schema, billions of dollars all lined up to process ITO, etc.. That's not going to shut off overnight and just accept a graphene replacement, right? So, from a price perspective and from an implementation perspective there are some challenges with ITO replacement, but I think that it strikes me as the kind of area where we can start hammering away at some of the existing thinking.

_

The Graphene Council thanks Jeffrey Draa, CEO of GROLLTEX for his time and unique insights into the developing market for graphene. 

 

Tags:  chemical vapor deposition  Hexagonal boron nitride  ITO  photovoltaics  sensors 

Share |
PermalinkComments (0)
 

Fraunhofer IPA Maps Out Its Graphene Strategy

Posted By Dexter Johnson, IEEE Spectrum, Thursday, November 30, 2017

The Fraunhofer Institute for Manufacturing Engineering and Automation IPA uses the tagline: “We manufacture the future”.

Certainly as one of the leading research institutes in the world for the development of automotive technology, Fraunhofer has a global reputation for delivering the latest cutting edge breakthroughs in any technology associated with the automotive industry from energy storage to lightweight engineering.

Based on Fraunhofer’s titanic reputation in R&D, it was a stroke of luck that The Graphene Council was able to meet up with Fraunhofer’s Head of Functional Materials, Ivica Kolaric, at the Economist’s “The Future of Materials Summit” held in Luxembourg in mid-November.

In his role as leader of the functional material group at Fraunhofer, Kolaric has been conducting research on nanoscale carbon materials, like graphene, for almost 20 years. The aim of all this work has consistently been to produce functionalized nanoscale carbon materials to bring them to industrial applications.

Kolaric and his team have been working specifically on graphene since 2008 and have been synthesizing graphene using both chemical vapor deposition (CVD) as well as exfoliation techniques. With these various grades of graphene, the Fraunhofer researchers have experimented with a variety of applications.

“We first started with applications in the field of energy storage and transparent conductive films,” said Kolaric in an interview at the Luxembourg conference.  “As you may remember there was a big discussion a few years back going on if graphene could serve as a replacement for idium tin oxide (ITO).  But we determined that this is maybe not the right application for graphene because when you use it large areas for conductive films it’s competing with commodity products.”

Kolaric also explained that Fraunhofer had collaborated with battery manufacturer Maxell in the development of different types of energy storage devices, specifically supercapacitors. They had some success in increasing the energy density of these devices, which is an energy storage device’s ability to store a charge. With the graphene, the increased surface area of graphene did give a boost to storage capabilities but it just couldn’t deliver enough of an increase in performance over its costs, according to Kolaric.

Now Kolaric says that Fraunhofer is looking at graphene in sensor applications, in particular biosensors. “Graphene is really a perfect substrate for doping, so you can make it sensitive for any kind of biological effects,” said Kolaric. “This could make it a very good biosensor.”

But Kolaric cautions that avenues for purification have to be developed. If this and other issues can be addressed with graphene, there is the promise of a sensor technology that could be very effective at detecting gases, which currently is tricky for automotive sensors that are restricted to detecting pressure and temperature. “I think graphene can play an important role in this,” added Kolaric.

In addition to next generation sensors, Kolaric believes that graphene’s efficiency as a conductor could lead to it being what he terms an “interlink” on the submicron level. Kolaric believes that this will lead to its use in power electronics.

Kolaric added: “I would say sensors and serving as an interlink, so these are the two occasions where we think graphene can be effective.”

Tags:  biosensors  energy storage  Fraunhofer Institute  indium tin oxide  ITO  sensors  supercapacitors 

Share |
PermalinkComments (0)
 

From the Lab to the Financial Markets: Applied Graphene Materials Leads the Way

Posted By Dexter Johnson, IEEE Spectrum, Wednesday, January 25, 2017

 

 

Back in 2010, Karl Coleman, a professor at Durham University in the UK, spun out a company at first known as Durham Graphene Science and then later floated on the stock market (AIM) as Applied Graphene Materials (AGM). 

The word quickly spread about AGM’s approach to producing graphene. The company’s manufacturing techniques did not require either a graphite source or a metal catalyst, with the latter leading to highly pure graphene platelets with little oxygen content.

From the outset, AGM has always been considered to have a flexible position in the graphene supply chain, with their product being adaptable to the needs of their clients. The company's graphene has been proposed for applications ranging from an indium-tin oxide (ITO) replacement in flexible displays to electrode material in batteries and supercapacitors. With its first production order and commercial application announced last October, we should begin to see the company’s flexibility demonstrate itself in the coming year. 

AGM is one of the few publicly traded graphene companies, which gives it a fairly unique position to observe the developing graphene markets. As one of The Graphene Council’s newest corporate members, we had the opportunity to ask some questions of AGM’s CEO, Jon Mabbitt, to get their view of graphene’s commercial development.

Q: The development of Applied Graphene Materials from university research to an AIM-traded business is a story that many lab research groups working with graphene and other 2D materials would like to duplicate.  What were a few of the most important factors that contributed to the success of your company bridging that gap between the lab and the fab?

A: Universities provide a fantastic environment in which to be creative, but often ideas do not progress beyond a single experiment or perhaps being the topic of a research paper. In our case the close connection between the Inorganic Chemistry department at Durham University and the Technology Transfer office facilitated the opportunity for the manufacturing processes to be financially supported. Without this early stage investment the ideas would probably have gone no further, but with seed capital and self-belief the people involved at this stage were able to deliver proof-of-concept. Another significant step was that the inventor recognised they were not necessarily best placed to lead the company going forward and was comfortable enough to pass on the responsibility to an experienced growth management team.

Q: Your corporate literature describes your production of graphene as a “bottom-up” process. Is this a chemical vapor deposition process or some kind of chemical exfoliation process? And do you see your process being adapted in some way that it could be used to produce monolayer graphene for electronic or optoelectronic applications in larger capacities than they are currently?

We describe our process as “bottom up” because we synthesize our graphene and do not exfoliate it from graphite. However, this is not a CVD process because we do not require a substrate on which to deposit the vapor. It is a chemical decomposition of alcohol, which is then reassembled to create the graphene nanoplatelets.

Q: It would seem that your current business model is that of a producer of graphene dispersions that supplies different product manufacturers to further enable their products? Do you see your business model evolving over time where you move further up the supply chain and eventually you would be manufacturing the products that are sold rather than the dispersions?

Our strategy is very simple: make graphene and format it. We only want to produce graphene and supply it in a format that can be easily handled by our customers and easily incorporated into their products. It is our customers who will create end products. Clearly by this approach working extremely closely with our customers is mutually beneficial to enable the optimum results.

Q: In your own business lines, what applications are showing the most potential for growth, i.e. coatings, composites, functional fluids, etc.? And why do you think this is the case: The underlying markets did not have any solution to the issues that the graphene-enabled products offered, or the graphene-enabled product outperformed what was currently in the market?

One of the Achilles heels of start-up companies is that they try to do too much. We have identified specific areas where we know our graphene material delivers particular benefits and so for now we remain focused on those areas: coatings (barrier performance), composites (mechanical performance) and functional fluids (friction modification). All sectors are looking for improvements, normally performance enhancement or cost reductions. The particular attributes graphene brings is that you get a lot of performance for very little quantity added. The ultra-high surface area to weight ratio combined with the chemical composition and bonding regime of graphene makes it super interesting. However, not all graphene is produced equally and the method of manufacture dictates the resultant properties of the material. Also whilst graphene has several attributes they cannot all be delivered concurrently in certain applications.

Q: In your dealings with customers, what is typically their biggest reservation in adopting your graphene dispersions and how do you typically overcome these doubts?

To gain customer interest you must provide credible data to support your assertions. Industrial companies will not spend time on technology concepts that are unproven. Once we have grabbed their attention then we need to support the customer really closely – things will go wrong before they go right and so a dogged mentality is essential. You also need to demonstrate that your business will continue to exist and be able to supply the products repeatedly and consistently in the long term.

Q: What do you think the overall market for graphene needs in order to see wider development of graphene-enabled products, i.e. more defined industry standards, just more time in the market, manufacturing costs to go lower? If all of these and more, which is the most acute?

I don’t believe there is or will be a distinct market for graphene, moreover graphene can be adopted largely as an additive to enhance a range of materials across several existing market sectors. I don’t subscribe to the idea that standardization will enable acceptance. Graphene is, and will remain for many years to come, a specialty chemical and exist in many different forms. There are some issues where a common approach would be beneficial for all, such as regulatory controls and H&S. Everyone involved in graphene needs more application successes and to achieve this there needs to be a bolder commitment from producers and advisors to go and make it happen.

Tags:  graphene platelets  ITO  publicly traded  stock market  supercapacitors 

Share |
PermalinkComments (0)