Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  graphene production  Batteries  Sensors  electronics  First Graphene  University of Manchester  CVD  energy storage  graphene oxide  Commercialization  composites  hexagonal boron nitride  Li-ion  Li-ion batteries  optoelectronics  Standards  supercapacitors  Carbon Nanotubes  CealTech  CMOS  Concrete  graphene platelets  Haydale  ITO  photodetectors  photonics  photovoltaics  quantum dots  Talga 

World’s First Graphene Skinned Plane

Posted By Terrance Barkan, Monday, August 13, 2018

 

 

The University of Central Lancashire (UCLAN) made an announcement about the recent unveiling of the world’s first graphene skinned plane at the internationally renowned Farnborough air show.

 

Haydale, (AIM: HAYD), the global advanced materials group, has supplied graphene enhanced prepreg material for Juno, a three-metre wide graphene-enhanced composite skinned aircraft, that was revealed as part of the ‘Futures Day’ at Farnborough Air Show 2018.

 

The prepreg material, developed by Haydale, has potential value for fuselage and wing surfaces in larger scale aero and space applications especially for the rapidly expanding drone market and, in the longer term, the commercial aerospace sector. By incorporating functionalised nanoparticles into epoxy resins, the electrical conductivity of fibre-reinforced composites has been significantly improved for lightning-strike protection, thereby achieving substantial weight saving and removing some manufacturing complexities. 

 

The Juno project, led by UCLAN, has been an ideal demonstration for the viability of the prepreg material for structural applications and the ability to manufacture components using traditional composite manufacturing methods. Further developments are underway to produce the next iteration of lightning strike protection materials based on these nano-carbon enhanced prepregs.

 

This technology also has performance benefits for a wide range of applications and industries including large offshore wind turbines, marine, oil and gas, and electronics and control systems.

 

Haydale worked with the aerospace engineering team at University of Central Lancashire, Sheffield Advanced Manufacturing Research Centre and the University of Manchester’s National Graphene Institute to develop the unmanned aerial vehicle, that also includes graphene batteries and 3D printed parts.

 

Ray Gibbs, Haydale CEO, said: “We are delighted to be part of the project team. Juno has highlighted the capability and benefit of using graphene properly dispersed into composite materials to meet key issues faced by the market, such as reducing weight to increase range, defeating lightning strike and protecting aircraft skins against ice build-up.”

 

David Banks, Haydale Chairman, said: “The unveiling of this plane shows how the use of graphene can offer great benefit to the aerospace industry, highlighting the potential near term commercial impact of graphene within this significant market.”

Tags:  Aerospace  composite  functionalized graphene  Haydale  Juno  Prepreg  UCLAN  University of Central Lancashire 

Share |
PermalinkComments (0)