Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.


Search all posts for:   


Top tags: graphene  graphene production  Batteries  Sensors  electronics  First Graphene  University of Manchester  CVD  energy storage  graphene oxide  Commercialization  composites  hexagonal boron nitride  Li-ion  Li-ion batteries  optoelectronics  Standards  supercapacitors  Carbon Nanotubes  CealTech  CMOS  Concrete  graphene platelets  Haydale  ITO  photodetectors  photonics  photovoltaics  quantum dots  Talga 

A World Leader in Graphene Production Sees Itself as a "Platform Play" in Advanced Materials

Posted By Dexter Johnson, IEEE Spectrum, Friday, October 12, 2018

With well over a decade in the business, XG Sciences is considered one of the most established graphene producers in the world.  It is behind one of graphene’s most high-profile applications in Callaway’s introduction of its so-called Chrome Soft golf ball that employs graphene supplied by XG Sciences to make the golf balls both softer and harder where they need to be.

XG Sciences recently became a corporate partner of the Graphene Council and we took that occasion to discuss with the company’s CEO, Philip Rose, the graphene market in general and how XG Science’s product line fits into that market.

We also were able to learn how graphene supply chains are developed and secured and how the introduction of graphene into many different products can be supported and promoted. Here’s our interview.

 Q: XG Sciences produces graphene platelets. Could you explain where that places you in the graphene marketplace (as opposed to monosheets of graphene)? What sort of applications does that product open up for you?

A:  The term “graphene” is often used to cover a variety of specific forms of the material, but we generally think about two broad classes of graphene materials – monolayer and nanoplatelet. One-atom thick films are commonly referred to as monolayer graphene and are manufactured from gases by assembling molecules to form relatively large, transparent sheets of material. We do not manufacture these films and do not participate in the markets for these films. In general, we believe that the markets for these films do not compete with those for graphene nanoplatelets.

XG Sciences offers an advanced material platform in the form of varying grades of xGnP® graphene nanoplatelets produced from two processes, each of which can be customized in many ways. Our proprietary manufacturing processes control the attributes of graphene nanoparticles. These attributes contribute to a range of properties that can be mapped to various end-market applications from automotive to sporting goods to packaging.

Because we have multiple production processes, and because we have invested in application know-how and development of value-added product formulations, we are able to address a range of needs in multiple market segments in a cost effective manner, providing breadth to our base capabilities and product portfolio. We believe these are all key differentiators in the market.

Based on the past 10 years of customer development activity, we understand that performance of graphene nanoplatelets in a specific application is primarily a function of the platelet’s diameter, thickness, planarity (or more broadly – morphology), and to some extent, the nature and concentration of any chemical groups on the platelets. There are other factors that may impact performance, such as optimized dispersion, product form delivered to the customer (powder vs. slurry), and so on. However, for the most part, performance in an application is related to the physical characteristics of the nanoplatelets. XG Sciences is skilled in the design and manufacture of graphene nanoplatelets, and our two proprietary manufacturing processes allow for the production of a broad product portfolio that can meet many needs across diverse end-use markets.

We sell bulk graphene nanoplatelets under the brand name xGnP®. These materials are produced in various grades, which are analogous to average particle thickness and average particle diameters. There are three commercial grades (Grades H, M and R), each of which is offered in three standard particle sizes and a fourth, C Grade, which is offered in three standard surface areas.

These bulk materials, which can be shipped in the form of a dry powder, are especially applicable for use as additives in polymeric or metallic composites, or in coatings or other formulations where particular electrical, thermal and/or barrier applications are desired. We also offer our materials in the form of dispersions of nanoplatelets in liquids such as water, alcohol and other organic solvents, or mixed into resins or polymers such as PET, polypropylene and urethanes.

As stated previously, we use two different commercial processes to produce these bulk materials. Grade H/M/R materials are produced through chemical intercalation of natural graphite followed by thermal exfoliation using a proprietary process developed by XG Sciences. Some of our process components are patented but we have chosen to keep others as trade secrets.  The “grade” designates the thickness and surface characteristics of these materials, and each grade is available in various average particle diameters. Surface area, calculated by the Brunauer, Emmet, and Teller (BET) Method, is used as a convenient proxy for thickness. So, each grade of products produced through chemical intercalation is designated by its average surface area, which ranges from 50 to 150 m2/g of material.

We also use direct methods to measure layer thickness such as tunneling electron microscopy (TEM) and atomic force microscopy (AFM). We are able to extend the surface area higher than those listed here (and therefore, to fewer layer nanoplatelets) but are not yet producing these materials commercially. As the market need emerges for few-layer graphene, we will consider making these materials available commercially.

Grade C materials, and some related composite materials, are produced through a high-shear mechanical exfoliation using a proprietary and patented process with equipment that we invented, designed, and constructed. The Grade C materials are smaller particles than those grades produced through chemical exfoliation. Grade C materials are designated by their BET surface area, which ranges from 300 to 800 m2/g. We are able to produce surface areas as low as 150 m2/g and as high as 900 m2/g but are not yet making those commercially available.  Should the market need them, we are ready to supply them.

We consider ourselves a “platform play” in advanced materials because our proprietary manufacturing processes allow us to produce varying grades of graphene nanoplatelets that can be mapped to a variety of applications in many market segments. However, we prioritize our efforts in specific areas that have the greatest technical, processing, environmental or economic challenges; places where customers are highly motivated to find solutions. At this time, we are focused on a few high-priority areas.

One such area is composites. Incorporation of our xGnP® graphene nanoplatelets into various thermoplastic, thermoset and elastomeric polymers have been shown to impart improvements in strength, electrical conductivity, thermal conductivity and/or barrier performance. We pursue several end-use applications that may benefit from one or more properties and believe that composites represent a potentially large opportunity for commercial sales.

For example, Callaway adopted xGnP® in their new Chrome Soft and Chrome Soft X golf balls. This new Callaway Golf® ball line incorporates XG Sciences’ high-performance graphene nanoplatelets into the outer core of the Chrome Soft balls, resulting in a new class of product that enables increased control, higher driving speeds and greater distance. We have other customers using our materials commercially in sporting goods equipment ranging from field hockey sticks to water sports equipment.

Automotive is another market segment adopting our materials. Ford Motor Company recently announced adoption of our materials in polyurethane based foam for use in fuel rail covers, pump covers and front engine covers.  Incorporation of our high-performance materials results in a 17 percent reduction in noise, a 20 percent improvement in mechanical and a 30 percent improvement in heat endurance properties, compared with that of the foam used without graphene.

We are also getting commercial traction in packing applications with a large U.S.-based water bottling company who is shipping product that incorporates our graphene nanoplatelets into PET.  Where use of xGnP® enables light weighting, improved modulus and shelf life as well providing energy savings during processing. 

XG was founded back in 2006. Since that time, we have sold products to over 1,000 customers in over 47 countries and many are in various stages of testing our products for numerous applications. For most customers, the process of “designing-in” new materials is relatively complex and involves the use of relatively small amounts of the new material in laboratory and engineering development for an extended period of time. We believe following successful development, customers that incorporate our materials into their products will then order much larger quantities of material to support commercial production.

Although, our customers are under no obligation to report to us on the usage of our materials, some have indicated that they have introduced, or will soon introduce, commercial products that use our materials. Thus, while many of our customers are currently purchasing our materials in kilogram (one or two pound) quantities, some are now ordering at multiple ton quantities and we believe many will require tens of tons or even hundreds of tons of material as they commercialize products that incorporate our materials. We also believe that those customers already in production will increase their order volume as demand increases and others will begin to move into commercial volume production as they gain more experience in working with our materials.

In 2017, our customer shipments increased by over 600% to almost 18 metric tons (MT) of products from the 2.5 MT shipped in 2016. In the three months ending June 30, 2018, we shipped 15.4 MT of product (11.2 MT of graphene nanoplatelets in the form of dry powders and 4.2 MT of slurry, cakes or other integrated products containing graphene nanoplatelets), an increase of 716% over the three months ending June 30, 2017 (1.9 MT mostly in the form of dry powder) and an increase of 5% as compared to the three months ending March 31, 2018 (10.4 MT of dry powder and 4.4 MT of slurry, cakes or other integrated products containing graphene nanoplatelets). This demand profile is further evidence that we are transitioning into higher-volume production. It’s a really exciting time for XG Sciences as we see our customers move into commercial production in multiple applications and end-use markets.

 Q: That leads to my next question, which is: are you moving up the value chain? For instance, you said you’ve invested and done a lot of work on energy storage and batteries, which is a very complicated business and physics and science to invest in. Are you looking to move up the value chain there? Creating perhaps a lithium-ion battery based on graphene, or are you still looking at yourselves as suppliers of the material for graphene and for battery producers?

A:  It's a great question. We don’t see ourselves making water bottles or golf balls. However, we do make a range of advanced materials we have coined as “integrated products”. These are all products that contain graphene nanoplatelets.

For example, we have a platform of inks and coatings that incorporate proprietary grades of our xGnP® graphene nanoplatelets. These grades are specifically designed for a given application and may not be offered for sale as dry powder – we reserve their use only in an integrated product. We may add binders and surfactants and solvents depending on the final application.  We have a concrete additive product available on Amazon that may fall into that category as well. We also make masterbatches of various thermoplastics (PP, HDPE, PET, etc.) where we vary the nature of the graphene nanoplatelet and the concentration to target various end-use applications.

In the next 3-5 years, we target 50% of our revenue coming from bulk materials (powders, slurries, cakes, etc.) and the other 50% from various forms of integrated products. 

Q: I would just like to circle back to the iterative process and working with the end users you mentioned earlier, and turn to a question I sent to you previously and that is, what is the greatest challenge for you in working with someone who's new to graphene that you have to explain what it's capabilities are? You outlined that already, but if you could just pinpoint a particular issue that you find that raises itself over and over and over again I think that would be illustrative.

A: There really isn’t any one greatest challenge – there are many small challenges that vary from customer to customer. I think at a fundamental level, in order to be a viable supplier of any advanced material – and certainly graphene nanoplatelets are no different – suppliers must be able to demonstrate three key things: performance, cost and scale.

Until a supplier is able to demonstrate these characteristics, customers may only consider them as an academic curiosity – and that is not meant to cast any aspersions on our academic colleagues. That is to say that a customer will not risk putting a new material into their product unless they are certain that such material will perform, that its price allows for its adoption and that it can be supplied in sufficient volume to meet demand requirements over time.

Of course, there are other relevant requirements such as batch-to-batch consistency, IP, access to capital to enable growth, etc. So, the primary “challenge,” if we couch it in that context, is set by the broader customer base that requires demonstration of viability, capability and credibility as a supplier.  We are able to meet, and in many instances exceed, these criteria so our primary task is now one of execution.

We have commercial traction and expect customers to continue to ramp their own production. We have many customers who are approaching commercialization and will add to our revenue growth over the next several quarters. In the meantime, we will continue to grow our organizational capability as well as our capacity to meet rising demand.

We recently announced completion of the first phase of the capacity expansion in our newest 64,000 square foot facility. The expansion has added 90 metric tons of graphene nanoplatelet production capacity, bringing the total capacity of the facility up to approximately 180 metric tons per year. Phase two of the expansion is expected to be complete by year-end and will result in up to 400 metric tons of total graphene nanoplatelet output capacity at the facility. Our total graphene nanoplatelet output capacity across both of our manufacturing facilities currently exceeds 200 metric tons per year and will more than double over the next three months, reaching up to an approximate 450 metric tons by year-end. The expansions support our mission to continue commercializing the use of graphene in customer products across diverse industries.

Q: I noticed in your background you worked at Sigma Aldrich, which is one of the big chemical companies. Did that give you a better understanding of what was ahead for you in order to get your product qualified by these companies? In other words, it appears as though smaller graphene producers are on a different time scale than a big chemical company. A big chemical company doesn't have any rush to do anything until they have the supply chain firmed up the way they want it, whereas, a smaller graphene producer, would like to start moving product as soon as possible. Does that give you any insight? What value did that provide you?

A: I think it absolutely does. I worked for Rohm and Haas prior to Sigma Aldrich and between the two, and now with XG Sciences, I have been in advanced materials for my entire career – which I am reticent to admit is now almost 30 years!

I have been involved in successfully introducing new materials to semiconductor manufacturers like Intel, IBM and TSMC, and to display manufacturers such as LGD, Samsung and AU Optronics as well as in a number of other electronic and industrial applications and markets. The process for new-material adoption is fairly end-market agnostic and the fundamental requirements of a supplier that I previously articulated are still relevant. The timing for adoption may vary from customer to customer and from market to market, but the process is the same.

Having successfully installed new materials with multiple customers and in multiple end-markets is very advantageous in helping to direct XG Sciences’ growth. Of course, it takes a team, and XG Sciences has very capable people in each of the functional areas required for success.

Q: You are a publicly traded company, right?

A: No. We have public reporting requirements by virtue of our self-underwritten public offering and S-1 registration statement, but we are not listed on any exchanges at this time. It is our intent to consider an up-listing event in the next 12 to 18 months.

 Q: With your background in advanced materials and while you're looking more at electronics like semi-conductors and flat panel displays, but when you mentioned the barrier for bottles and those containers, I remember some years back maybe 15 years back, people were talking about nano clays so that you could have plastic beer bottles at ball parks. What are the benefits over some of those other nanomaterials for graphene platelets?

A: That's a good question. It really depends on what performance they wish to achieve and then to assess whether that is achievable using a given material.  One of the clear advantages of graphene nanoplatelets over other nanomaterials is their ability to impart multi-functional performance. In the example I gave for PET-based water bottles, incorporation of our nanoplatelets improve physical strength, shelf life (barrier) and energy savings (thermal conductivity). A nanoclay, for example, would likely only impact barrier performance – and perhaps not to the extent one could achieve with graphene nanoplatelets.

We don’t typically see our materials competing with other nanomaterials for the same application. Graphene and graphene nanoplatelets are a relatively new material – they open up new performance and design options to engineers.  That’s what makes these materials so exciting and why we are focused on building a company around their manufacture and supply. We are beginning to see their adoption at large volumes and in multiple applications, which bring about more curiosity and provide evidence of the power of graphene to a wider audience. I have touched on just a few applications in our discussion so far, but the full breadth of the impact graphene nanoplatelets can have is nearly limitless. 

Tags:  Callaway  CVD  GNP  golf ball  graphene platelets  Li-ion batterie  sporting goods 

Share |
PermalinkComments (0)

From the Lab to the Financial Markets: Applied Graphene Materials Leads the Way

Posted By Dexter Johnson, IEEE Spectrum, Wednesday, January 25, 2017



Back in 2010, Karl Coleman, a professor at Durham University in the UK, spun out a company at first known as Durham Graphene Science and then later floated on the stock market (AIM) as Applied Graphene Materials (AGM). 

The word quickly spread about AGM’s approach to producing graphene. The company’s manufacturing techniques did not require either a graphite source or a metal catalyst, with the latter leading to highly pure graphene platelets with little oxygen content.

From the outset, AGM has always been considered to have a flexible position in the graphene supply chain, with their product being adaptable to the needs of their clients. The company's graphene has been proposed for applications ranging from an indium-tin oxide (ITO) replacement in flexible displays to electrode material in batteries and supercapacitors. With its first production order and commercial application announced last October, we should begin to see the company’s flexibility demonstrate itself in the coming year. 

AGM is one of the few publicly traded graphene companies, which gives it a fairly unique position to observe the developing graphene markets. As one of The Graphene Council’s newest corporate members, we had the opportunity to ask some questions of AGM’s CEO, Jon Mabbitt, to get their view of graphene’s commercial development.

Q: The development of Applied Graphene Materials from university research to an AIM-traded business is a story that many lab research groups working with graphene and other 2D materials would like to duplicate.  What were a few of the most important factors that contributed to the success of your company bridging that gap between the lab and the fab?

A: Universities provide a fantastic environment in which to be creative, but often ideas do not progress beyond a single experiment or perhaps being the topic of a research paper. In our case the close connection between the Inorganic Chemistry department at Durham University and the Technology Transfer office facilitated the opportunity for the manufacturing processes to be financially supported. Without this early stage investment the ideas would probably have gone no further, but with seed capital and self-belief the people involved at this stage were able to deliver proof-of-concept. Another significant step was that the inventor recognised they were not necessarily best placed to lead the company going forward and was comfortable enough to pass on the responsibility to an experienced growth management team.

Q: Your corporate literature describes your production of graphene as a “bottom-up” process. Is this a chemical vapor deposition process or some kind of chemical exfoliation process? And do you see your process being adapted in some way that it could be used to produce monolayer graphene for electronic or optoelectronic applications in larger capacities than they are currently?

We describe our process as “bottom up” because we synthesize our graphene and do not exfoliate it from graphite. However, this is not a CVD process because we do not require a substrate on which to deposit the vapor. It is a chemical decomposition of alcohol, which is then reassembled to create the graphene nanoplatelets.

Q: It would seem that your current business model is that of a producer of graphene dispersions that supplies different product manufacturers to further enable their products? Do you see your business model evolving over time where you move further up the supply chain and eventually you would be manufacturing the products that are sold rather than the dispersions?

Our strategy is very simple: make graphene and format it. We only want to produce graphene and supply it in a format that can be easily handled by our customers and easily incorporated into their products. It is our customers who will create end products. Clearly by this approach working extremely closely with our customers is mutually beneficial to enable the optimum results.

Q: In your own business lines, what applications are showing the most potential for growth, i.e. coatings, composites, functional fluids, etc.? And why do you think this is the case: The underlying markets did not have any solution to the issues that the graphene-enabled products offered, or the graphene-enabled product outperformed what was currently in the market?

One of the Achilles heels of start-up companies is that they try to do too much. We have identified specific areas where we know our graphene material delivers particular benefits and so for now we remain focused on those areas: coatings (barrier performance), composites (mechanical performance) and functional fluids (friction modification). All sectors are looking for improvements, normally performance enhancement or cost reductions. The particular attributes graphene brings is that you get a lot of performance for very little quantity added. The ultra-high surface area to weight ratio combined with the chemical composition and bonding regime of graphene makes it super interesting. However, not all graphene is produced equally and the method of manufacture dictates the resultant properties of the material. Also whilst graphene has several attributes they cannot all be delivered concurrently in certain applications.

Q: In your dealings with customers, what is typically their biggest reservation in adopting your graphene dispersions and how do you typically overcome these doubts?

To gain customer interest you must provide credible data to support your assertions. Industrial companies will not spend time on technology concepts that are unproven. Once we have grabbed their attention then we need to support the customer really closely – things will go wrong before they go right and so a dogged mentality is essential. You also need to demonstrate that your business will continue to exist and be able to supply the products repeatedly and consistently in the long term.

Q: What do you think the overall market for graphene needs in order to see wider development of graphene-enabled products, i.e. more defined industry standards, just more time in the market, manufacturing costs to go lower? If all of these and more, which is the most acute?

I don’t believe there is or will be a distinct market for graphene, moreover graphene can be adopted largely as an additive to enhance a range of materials across several existing market sectors. I don’t subscribe to the idea that standardization will enable acceptance. Graphene is, and will remain for many years to come, a specialty chemical and exist in many different forms. There are some issues where a common approach would be beneficial for all, such as regulatory controls and H&S. Everyone involved in graphene needs more application successes and to achieve this there needs to be a bolder commitment from producers and advisors to go and make it happen.

Tags:  graphene platelets  ITO  publicly traded  stock market  supercapacitors 

Share |
PermalinkComments (0)

What is the Best Form of Carbon Nanomaterial for Your Sporting Goods?

Posted By Dexter Johnson, IEEE Spectrum, Wednesday, November 16, 2016

Ever since nanomaterials made their first tentative steps into commercial markets, the early targets were in sporting goods. There is a pretty good catalogue of the different nanomaterials and the various sporting good products that they have been used for in a paper published in the Center for Knowledge Management of Nanoscience and Technology’s (CKMNT) from which an excerpt is provided here

The CKMNT report was compiled over three years ago and what is conspicuously absent from its list of nanomaterials for sporting goods is graphene. Carbon nanotubes are there as well as carbon nanofibers for bicycle frames—an application I had a brief foray into seven years ago when I tried to discern whether there was any appreciable benefit to using carbon nanofibers than just run-of-the-mill fillers in the composite.  But graphene just a few years back didn’t apparently make a blip on the radar.

That has all changed, of course, with graphene finding high-profile applications in tennis racquets and skis, both of which are produced by Head. However, I was more intrigued by the recent application of graphene in cycling since I am an avid cyclist myself.

The application that has gotten a lot of press is the adoption of graphene by venerable Italian cycling tire manufacturer Vittoria when it launched graphene-enabled tire dubbed G+ or Graphene Plus. You can see a promotional video below, but the main advantages of the graphene-enabled tires are supposed to be lighter weight, greater strength and durability. Of course, every tire is supposed to provide good grip and low rolling resistance and this new series of tires claims to tick those boxes as well.

My question was whether graphene could really offer much benefit over conventional reinforcing fillers like carbon black, or were we just looking at a bit of marketing and extra price per tire. So, I asked an industry expert in using graphene with different compounds, who asked to remain anonymous, if much benefit could be derived from using graphene in an application like this.

Vittoria has made it known that they are using a graphene platelet material for their tires. My source explained rubber compounding has so many variables that the kind of graphene platelet they are using would depend on the elastomer system, other parts of the filler system, protection system, process aids, curing package.

He added that as important as the specifications of the graphene are how they are processing the material is equally as important. Conventional reinforcing fillers such as carbon black are usually compounded into the raw rubber in mixers prior to vulcanization. Graphene, he explained, could be added into the product through a similar approach. However there are other routes to introducing graphene into the rubber matrix, which he was not at liberty to discuss.

The aims of modifying tire rubber formulations have traditionally been aimed at improving the so-called "tire triangle" of properties. This triad includes: Low rolling resistance, Abrasion resistance and Wet-traction control.

While graphene has been thought to improve these above properties, my source concedes that no matter what reinforcing fillers are used it is usually very difficult to obtain improvement to all three properties of the tire triangle simultaneously, there is usually a trade-off in performance between these properties. 

My source also points out that carbon nanotubes have long been expected to deliver the same type of improvements as graphene to tire performance but have never managed to gain a market foothold.

In the UK-based Cycling Weekly, the question of graphene in tires was given a lengthy discussion in which they interviewed one of Vittoria’s competitors, Continental.

“In the past we did some trials with graphene in the casing and tread of our tyres,” said Christian Wurmbäck, head of product development bicycle tires at Continental in the interview with Cycling Weekly. “However, although the directionality of the compound brought some benefits to the casing, the development of our Carbon Black compounds [which are said to use carbon nano particles] is at a higher level, so there was no need to jump back on graphene.”

It would seem the jury is still out on how much of a difference can make on improving your bicycle tires. I may just have to go and do a test, if I can get someone to send me a couple for testing purposes.

Tags:  bicycles  graphene  graphene platelets  sporting goods 

Share |
PermalinkComments (0)