Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.


Search all posts for:   


Top tags: graphene  graphene production  Batteries  Sensors  electronics  First Graphene  University of Manchester  CVD  energy storage  graphene oxide  Commercialization  composites  hexagonal boron nitride  Li-ion  Li-ion batteries  optoelectronics  Standards  supercapacitors  Carbon Nanotubes  CealTech  CMOS  Concrete  graphene platelets  Haydale  ITO  photodetectors  photonics  photovoltaics  quantum dots  Talga 

Graphene Changes the Game in Optoelectronics

Posted By Dexter Johnson, IEEE Spectrum, Tuesday, April 24, 2018

Photons are faster than electrons. This has lead scientists to see if they can harness light (photons) to operate an integrated circuit. While this should result in faster circuits, there’s a hitch: wavelengths of light are much larger than the dimensions of today’s computer chips. The problem is that you simply can’t compress the wavelengths to the point where they work in these smaller chip-scale dimensions.

Scientists have been leveraging a new tool lately to shrink the wavelengths of light to fit into smaller dimensions: plasmonics. Plasmonics exploits the waves of electrons—known as plasmons—that are formed when photons strike a metallic structure. Graphene has played a large role in this emerging field because it has the properties of a metal—it’s a pure conductor of electrons.

The Institute of Photonic Sciences (ICFO) in Barcelona,  which has been a leader in this field for years, is now reporting they have taken the use of graphene for shrinking the wavelengths of light to a new level. In research described in the journal Science, ICFO researchers have managed to confine light down to a space one atom thick in dimension. This is certainly the smallest confinement ever achieved and may represent the ultimate level for confining light.

The way the researchers achieved this ultimate confinement was to use graphene along with one of its two-dimensional (2D) cousins: hexagonal boron nitride, which is an  insulator.

By using these 2D cousins together, the researchers created what’s known as van der Waals heterostructures in which monolayers of different 2D materials are by stacked on top of each other and held together by van der Waal forces to create materials with tailored electronic properties—like different band gaps for stopping and starting the flow of electrons. In this case, the layers included hexagonal boron nitride layered on top of the graphene and then involved adding an array of metallic rods on top of that. This structure had the graphene sandwiched between an insulator and a conductor. The graphene in this role served to guide the plasmons that formed when light struck the outer metallic rods.

In the experiment, the ICFO researchers sent infrared light through devices made from the van der Waal heterostructures to see how the plasmons propagated in between the outer metallic rods and the graphene.

To get down to the dimensions of one atom for confining the light, the researchers knew that they had to reduce the gap between the metal and the graphene. But the trick was to see if it was possible to reduce that gap without it leading to additional energy losses.

To their surprise, the ICFO researchers observed that even when a monolayer of hexagonal boron nitride was used as a spacer, the plasmons were still excited by the light, and could propagate freely while being confined to a channel of just on atom thick. They managed to switch this plasmon propagation on and off, simply by applying an electrical voltage, demonstrating the control of light guided in channels smaller than one nanometer of height.

The researchers believe that these results could to lead a new generation of optoelectronic devices that are just one nanometer thick. Down the road, this could lead to new devices such as ultra-small optical switches, detectors and sensors.

Tags:  graphene  Hexagonal boron nitride  optical switches  optoelectronics  plasmonics  sensors 

Share |
PermalinkComments (0)

Plasmonics Without Light Just Flipped Nanophotonics on its Head

Posted By Dexter Johnson, IEEE Spectrum, Monday, October 23, 2017

The use of graphene in the growing field known as plasmonics—in which the waves of electrons known as surface plasmons that are generated when photons strike a metallic structure—has been transforming the world of photonics and optoelectronics, enabling the possibility of much smaller devices operated by photons rather than electrons.

The Graphene Council has covered the work being performed at one of the leading research institutes in the world in this field of plasmonics, the Institute of Photonic Sciences (ICFO) in Barcelona. 

We had the opportunity to visit ICFO last week and speak to a number of their researchers, which we will be sharing in the coming weeks. In particular, we spoke to F. Javier García de Abajo from the Nanophotonics Theory research group at ICFO,  who has proposed a revolutionary approach of exploiting graphene for plasmonics.

It’s worth providing a bit of background on the field of plasmonics before jumping to this latest research. The use of photons instead of electrons for something like an integrated circuit has the clear benefit that photons travel much faster than electrons, promising much faster devices. However, the use of light in these applications is limited by the relatively large size of wavelengths of light. Light is fast, but their wavelengths are much larger than nanometer-scale dimensions of most integrated circuits.

Plasmonics provides a way to convert that light—photons—into waves of electrons that can be tuned to have much smaller dimensions than those of light. The dimensions of these plasmon waves can be a hundred times smaller than the smallest wavelengths of light. This means that light can serve as the basis of photonic integrated circuits, but many more devices than that.

The field of plasmonics has really taken in off in the last half-decade, and ICFO has been at the forefront of a lot of that work, especially in using graphene to enable the effect. However, what Garcia de Abajo has proposed is a new theoretical approach to generate visible plasmons in graphene not from light but from tunneling electrons.

In research published in the journal ACS Photonics, Garcia de Abajo and his colleague Sandra de Vega have suggested that there are more efficient ways of generating surface plasmons on graphene than using an external light source and have instead shown through models that graphene plasmons can be efficiently excited via electron tunneling in a sandwich structure formed by two graphene monolayers separated by a few atomic layers of hexagonal boron nitride.

As mentioned, it’s possible to tune the size of the plasmon waves, especially graphene plasmons, which can be changed in size according to the amount of doping level (an addition of other materials). While high doping levels can push the wavelength of the graphene plasmons towards the visible range, these grpahene plasmons primarily reside in the mid-infrared region, which translates into a weak coupling between far-field light and graphene.

What de Vega and García de Abajo have proposed is a methodology for visible-plasmon generation in graphene that requires no light at all. Instead, plasmons are generated from tunneling electrons, which are electrons that are able to pass through a material on the quantum level that they could not otherwise pass through.

To achieve this photon-less plasmonics, the researchers propose a graphene–hexagonal boron nitride (hBN)–graphene sandwich structure. In their model, the hBN layer is 1-nm thick that is sandwiched between two graphene monolayers.

When the right amount of voltage (bias) is applied between the two graphene sheets, it produces tunneling electrons through the gap. The researchers discovered a particular voltage window in which the tunneling electrons lose energy through the excitation of a propagating optical plasmon rather than dissipate through coupling with the vibrations of the crystal lattice of hBN that carry heat, which are known as phonons, (low bias) or electron–electron interactions (high bias).

One of the side benefits of plasmonic devices that operate in this way—without the need for photons—can also be used in reverse as sensors. In this way when a change occurs in the graphene plasmon properties, that change could lead to a voltage readout.

Tags:  electrons  graphene  hexagonal boron nitride  ICFO  photonics  photons  plasmonics  sensors 

Share |
PermalinkComments (0)